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Sequences of Infinite Bifurcations and Turbulence in 
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Two infinite sequences of orbits leading to turbulence in a five-mode 
truncation of the Navier-Stokes equations for a 2-dimensional incom- 
pressible fluid on a torus are studied in detail. Their compatibility with 
Feigenbaum's theory of universality in certain infinite sequences of bi- 
furcations is verified and some considerations on their asymptotic behavior 
are inferred. An analysis of the Poincar6 map is performed, showing how 
the turbulent behavior is approached gradually when, with increasing 
Reynolds number, no stable fixed point or periodic orbit is present and 
all the unstable ones become more and more unstable, in close analogy 
with the Lorenz model. 

KEY WORDS:  Navier-Stokes equations; turbulence; strange attractors; 
Poincar~ map; infinite sequences of periodic orbits; stable and hyperbolic 
orbits collapse; universal properties in infinite sequences of bifurcations. 

1. I N T R O D U C T I O N  

A model  obta ined by a suitable f ive-mode t runcat ion  o f  the Nav ie r -S tokes  

equat ions  for a two-dimens ional  incompressible  fluid on a torus has been 

presented in Ref. 1. 

The  system of  nonl inear  ordinary  differential equat ions resulting f rom 

such a t runcat ion  is 

2~ = - 2 x a  + 4x2x8 + 4x~x5 

22 = - 9 x 2  + 3xlxa 

2a = - 5 x a - 7 x l x 2  + r  

2~ = - 5 x  4 - XzX s 
25 = - x a  - 3x~x4 
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(where r is the Reynolds number), and exhibits an interesting variety of 
different behaviors for different ranges of r. Keeping the same symbols as 
in Ref. 1 for the critical values of r, the most interesting feature is the 
stochastic behavior observed when R~2 < r < R~3, with 28.73 < R~2 < 29.0 
and R~3 ,~ 33.43. 

In recent years much attention has been devoted to the study of models 
exhibiting such a feature when one or more parameters increase beyond 
certain critical values. The best known models of this kind are certainly the 
ones by Lorenz (2-~) and H6non. (~'6~ Ruelle and Takens (7~ explain this sto- 
chastic behavior as a consequence of the appearance of an attractor with a 
complicated nature ("strange attractor"), on which th.e motion seems 
completely chaotic ("turbulence"). In addition to detailed studies on the 
nature of these attractors (see, for example, Lanford, (8) and Hdnon and 
Pomeau(6)), strong interest has been focused upon the study of the mechanism 
of their generation. 

In Ref. 1 it is shown that turbulence is reached through a long and 
rather complicated sequence of bifurcations related to two sequences of  
orbits: the former consists of four orbits with periods T, 2T, 4T, and 8T, 
respectively, and the latter of five orbits of  a different type with periods 
T*, 2T*, 4T*, 8T*, and 16T*. In the following, ~ ,  i = 0, 1, 2, 3, will refer to 
the orbits of the former sequence and ~*,  i = 0, 1,..., 4, to the orbits of the 
latter? The orbit ~0" is found for a value of r larger than but very close 
to the largest value for which ~a is still found. ~ It is then suggested that the 
sequence T~ is finite, different from cC~*, and T3 bifurcates in ~o*. Since this 
transition remains an obscure point, because it does not fit very well with the 
ideas of bifurcation theory, it seems interesting to us to investigate more 
deeply the two sequences of orbits. 

A further reason for this investigation is to verify if the behavior of 
the sequence ff~* is compatible with the strongly suggestive idea of univer- 
sality in certain infinite sequences of bifurcations developed by Feigen- 
baum. (9) This exhaustive study has been possible because we have been able 
to apply numerical schemes that are more efficient for studying the stability 
of  orbits and especially in searching for new orbits, even unstable ones. 
With these new techniques, for a better understanding of the generation of 

3 More precisely, c~ must be regarded as one of four symmetrically placed, identical 
orbits going through identical behavior, and the same for ~*. T h e r e  are then four 
sequences % and four %*, although we will refer simply to "the" sequence cg~ or cg., 
when not otherwise required. The presence of quadruples of periodic solutions is 
accounted for by the symmetries (xl, x2, x3, -x4, -xs)*-~ (xl, x2, xa, x4, x~), 
( - m ,  -x~, x3, -x4, x~)~ (xl, x2, x3, x4, x~), (-x~, -x~, x3, x~, --x~)~ (xl, x2, 
X3 ~ 2 4  ~ X5) .  

4 ~3 is observed up to r = 28.6660, while ~o* is first found for r = 28.6662. 
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the "s t range a t t rac tor"  we also have been able to reconsider the transitions 
through R12 , for r increasing, and R13, for r decreasing, with which the 
system goes over to turbulent behavior. The results of  these investigations 
are described in the following. 

In Section 2 a detailed analysis of  the two sequences of  orbits c~ and 
~ *  is given, showing that both of them are very likely to be infinite, with 
a phenomenon of hysteresis because of the simultaneous presence of the 
orbits ~g~, i >/ 3, with ~0". 

In Section 3 it is shown that the appearance of the "s t range a t t rac tor"  
for r decreasing to Rz3 follows the collapse of  the stable orbit present for the 
high-r regime s with an unstable hyperbolic one and that analogous phe- 
nomenology is present in the appearance of cg0*. An interpretation using 
the theory of the bifurcation of periodic orbits in generic conditions (v~ is 
tried. 

In Section 4 the compatibility of  the, now two, infinite sequences of  
bifurcations with the universality theory developed by Feigenbaum is veri- 
fied and some considerations on their asymptotic behavior are inferred. 

In Section 5 a detailed analysis of  the Poincar6 map shows how the 
turbulent behavior is approached gradually when the previously stable 
periodic orbits, now all unstable, become more and more unstable for r 
increasing. 

Finally, a schematic picture of  the features exhibited by the system is 
presented in Section 6, together with some concluding remarks. 

2. T W O  I N F I N I T E  S E Q U E N C E S  OF B I F U R C A T I O N S  

In Ref. 1 it is shown that for a certain value of the Reynolds number 
r (r = R3 = 22.85370163 ...) four previously stable fixed points become 
unstable and four stable periodic orbits, referred to as ~r in Section 1, arise 
via a H o p f  bifurcation 6 around each fixed point. With increasing r, the 
periodic orbits are shown to go through a number of  bifurcations, doubling 
in period and winding up twice as many times around the fixed points from 
which they are generated. This is shown to happen up to r = 28.6660, when 
three successive bifurcations have taken place, giving rise to the orbits 
cgz, c~2, ~3. For r = 28.6662 four new stable orbits %*  are found, with 
structure and period different from the previous ones of  ~a, each of them 
winding up around two of the fixed points. It  is stressed that no definite 
statement can be made about the fact that no further similar bifurcation 

We recall that for r -+ R13 from above, this stable periodic orbit bifurcates with a 
real eigenvalue crossing the unit circle at + 1. 

6 For a detailed theory concerning the Hopf bifurcation and its applications see Ref. 11, 
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takes place in the sequence c~; all the phenomenology observed, however, 
leads to the conjecture that c~s bifurcates in %*. 

The difficulty in interpreting this point according to the bifurcation 
theory motivated us to reconsider it, applying Newton's method to obtain 
and analyze periodic solutions. Once the approximate initial point is close 
enough, the convergence of the method is fast, both for stable and unstable 
periodic orbits. The main purpose of such a method is in fact to be able 
to find unstable periodic solutions too. 

Going back to the study of  the first sequence of orbits, we have been 
able to determine the bifurcation points with a very good accuracy and, 
much more important, to find two more orbits in the sequence ~ ,  i.e., (~ 
and c~ (see Table I). We have also verified that each of the orbits in the 
sequence c~, becomes unstable when an eigenvalue of the Liapunov matrix 
of  the Poincar6 map crosses the unit circle at the point - 1.7 The agreement 
with what is predicted by the bifurcation theory in this case is now complete, 
since upon bifurcation the previously stable orbit becomes unstable and a 
new stable orbit appears, with the period doubled (see Ref. 7). At this 
point it is reasonable to infer that the sequence cg~ is infinite too. We have 
not carried out a further investigation for higher bifurcated orbits because 
of the high amount of computational time required even to consider only 
the next one. 

Also for the sequence of  orbits if** the bifurcation points have been 
determined very accurately using the Newton method, up to the orbit if4* 
(see Table II). It has been verified that ~ *  is generated by a sequence of  
bifurcations of the same kind as those for cg,, since also each orbit ~** 
becomes unstable with an eigenvalue of  - 1 in the Liapunov matrix of the 
Poincar6 map. 

7 This was already seen in Ref. 1 for the orbit %. 

Table I. B i furcat ion  points pi of the  
Periodic Orbits in the  Sequence ~i  and 

Relat ive Periods T(pi) 

i pc T(pO 

0 28.4105 0.81621 
1 28.6399 1.64567 
2 28.6641 3.29334 
3 28.66776 6.58741 
4 28.668463 13.17507 
5 28.668611 26.35026 
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Table I|. Bifurcation points Pi* of the 
Periodic Orbits in the Sequence ~/* 

and Relative Periods T*(pi*) 

i pt* T*(pi*) 

0 28.7013 3.80928 
1 28.71606 7.62056 
2 28.71926 15.24271 
3 28.719947 30.48597 
4 28.720103 60.97222 

A question left open is how the orbit Wo* appears. The answer is that 
an unstable orbit exists simultaneously with W0*, very close to it, and the 
two collapse upon bifurcation for r decreasing. All the details will be given 
in the next section. 

An important feature must be emphasized concerning the two sequences 
of  orbits ~i and ~i*, i.e., the simultaneous presence of different stable orbits 
for the same value of the Reynolds number r in a certain range of r. For 
r 1> 28.663 in fact the stable orbit cg0* is present together with one of the 
sequence ~ .  I t  is clear that W0* appears in the beginning with a very small 
basin of  attraction; with increasing r, this becomes larger and larger, while 
that of  the simultaneous orbit cg~ gets smaller and smaller, c~ already appears 
with a very small basin of  attraction and ~5 even more so. The simultaneous 
presence of  more than one attracting orbit is termed hysteresis and has the 
effect of  causing a rather sensitive dependence of the asymptotic solution on 
the initial conditions. In this kind of model this was found by Curry <12~ 
in a generalized Lorenz system and by us ~3~ as a very strong feature in a 
seven-mode truncation model of  the two-dimensional Navier-Stokes 
equations. 

3. C O L L A P S E  OF  A S T A B L E  O R B I T  W I T H  A N  U N S T A B L E  O N E  

One of the interesting results of  Ref. 1 is the observation that, after 
the second infinite sequence of orbits, the system shows the presence of two 
symmetric attractors, with all the characteristics of a "s t range attractor," 
on which a random motion takes place. With increasing Reynolds number r, 
each attractor seems to shrink to a stable periodic orbit, present for all the 
high-r regime considered. Analysis of  the stability of  this orbit shows that, 
with decreasing r toward Rla = 33.43, an eigenvalue of the Poincar6 map 
approaches the unit circle at the point + 1. It  seems of interest to us to attempt 
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to obtain a better understanding of the way this bifurcation takes place, as 
it is connected with the transition to turbulence. 

We have verified that after the bifurcation, i.e., for r < R~3 , the orbit 
is no longer present. This fact suggests the hypothesis that the stable orbit 
could disappear by collapse with an unstable one present at the same time 
(see, for example, Brunowsky(l~). We have looked at how the fixed point 
of  the Poincar6 map for the stable orbit, using a fixed hyperplane, would 
move when r decreases toward Ra3. Keeping in mind the hypothesis of 
collapse, by extrapolation we have been able to find the fixed point for an 
unstable orbit at a value of r close to the critical one. We have then followed 
the unstable orbit present together with the stable one, quite close to it, and 
disappearing for r < R~a. It has been verified that, with decreasing r toward 
R~3, the two orbits become closer and closer (see Fig. 1) and so do their 
periods, that for the stable orbit increasing, that of the unstable one de- 
creasing. Figure 2, where the fixed points of the Poincar6 map for the stable 
and unstable orbits are represented for different values of r approaching R~a 
from above, shows the phenomenon of collapse quite clearly. 

The same detailed analysis performed on the stable orbit present in the 
high-r regime has been carried on for C~o* , since a study of its stability shows 
an eigenvalue of the Poincar6 map approaching the unit circle at + 1 for r 
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Fig. 2. Fixed points  o f  the Poincar6 map  for the stable ( + )  and  hyperbol ic  ( x )  orbits  
for r approach ing  R13 f rom above:  (a, a ' )  r = 33.80; (b, b') r = 33.70; (c, c') r = 33.60; 
(d, d ' )  r = 33.50; (e, e') r = 33.44. 
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Fig. 4. Projections of the Poincar6 map on the plane (xl, x4) for r = (a) 33.300; (b) 
33.430; (c) 33.4385; (d) 33.440. The symbol + (x )  represents the fixed point of the 
stable (hyperbolic) orbit for r = 33.440. 

decreasing toward 28.663, the orbit  disappearing below that  value. For  ~o* 
too we have verified the identical phenomenon  of  collapse with an unstable 
orbi t  @0" (see Fig. 3); the difference f rom the previous case is that  no  attrac- 
tor close to the orbit  is present after the bifurcation. The presence of  the 
orbit  c~0*, besides explaining the bifurcation for r = 28.663, plays a role in 
the explanation o f  how the model  goes over to " t u r b u l e n t "  behavior, as 
will be seen in Section 5. 

In  their fundamental  paper, among  other considerations, Ruelle and 
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Fig. 4. Continued. 

Takens ~7~ analyze the bifurcations of  a stable periodic orbit in generic systems 
when the Poincar6 map has only a finite number of isolated eigenvalues with 
modulus 1 and the others inside the open unit circle�9 They find that when 
only one eigenvalue crosses the unit circle at the point + 1, one should 
expect the attracting closed orbit to disappear together with a hyperbolic 
closed one and no attractor close to the orbit to appear after the bifurcation 
has taken place�9 This is the exact phenomenology found for cg0*, but at 
first sight not that for the orbit in the high-r regime. In this last case in fact 
at the bifurcation point we observe the collapse of the two orbits, but after 
the bifurcation a strange attractor is present, apparently close to the orbits. 
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This phenomenology does not seem to be in agreement with Ref. 7, 
so we have tried to study in more detail the transition from the strange 
attractor to the periodic orbits. 

For different values of  r approaching R13 from below, we have con- 
sidered the Poincar6 map on the hyperplane x3 = 3.0, x~ /> 0, plotting its 
projection on (x~, x4) together with, as a reference, the fixed points of the 
stable and hyperbolic orbits for r slightly greater than R~a (r = 33.44). 

Figures 4a-4c clearly show how, as r approaches R18, the points tend 
to dispose themselves along a line, getting denser and denser on a segment 
containing the fixed points of the two orbits. Looking at the projection of 
the intersection points on the plane (x~, x~), this segment is described from 
left to right, with a return mechanism which redescribes it always progress- 
ing in the same direction. Moreover, numerical evidence has been found 
for the two following facts: for r-+Rla, 33.4385 < Rla < 33.4390, the 
length of  the segment does not seem to tend to zero; at r = R~3 a stable 
fixed point for the Poincar6 map appears on the segment. 

A possible qualitative explanation for the phenomenology is the exis- 
tence of some attracting variety, containing the "strange at tractor" for 
r < R~a, and a stable periodic orbit, together with an unstable one, for 
r > R~a. The presence of such a manifold, attracting also for r > Rla, 
appears to be confirmed in Fig. 4d, where the approach to the fixed point 
of the stable orbit on the Poincar6 map is shown for r = 33.44. Looking at 
the phenomenon for r increasing, we have then that the strange attractor 
does not " sh r ink"  to the orbit, in agreement with the bifurcation theory. 

For r decreasing, the stable orbit and the hyperbolic one collapse and, 
disappearing, are replaced by a " la rger"  attractor which occupies a portion 
of a manifold to which the orbits are always attracted for r near R~8, no 
matter whether larger or smaller; the diameter of the attractor does not tend 
to zero as r -+ R13. 

4. COMPATIB IL ITY  W I T H  A CONJECTURE OF UNIVERSALITY 
IN INFINITE SEQUENCES 

In a recent paper, Feigenbaum <9~ develops a very interesting theory 
concerning a large class of recursion relations x .+ l  = )tf(x,,) exhibiting 
infinite bifurcations, varying the parameter ~t in the open interval (0, 1). 
They are shown to possess a structure essentially independent of the recursion 
function that, among other properties, is supposed to map the closed inter- 
val [0, 1 ] on itself and have a unique, twice differentiable maximum ft. For  
such a class o f f ,  a ~ exists such that a stable 2~-point limit cycle including 

exists. It is shown as numerical evidence that 

) t ~ -  ~ . - z  = 3 lira 3. = lim X-~.+ 1- 
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i.e., the ~, geometrically converge to a certain ~oo at the rate 8, independent 
of  the specific f u n c t i o n f  

The same asymptotic behavior is shown to take place for 

A,, - A,_ 1 
A~+, -- A~ 

where A~ is the nth bifurcation point. Moreover, when ~ is increased in order 
to obtain the transition from a stable 2"-point to a stable 2~+l-point limit 
cycle, the local structure about ~ reproduces itself on a scale c~ times smaller. 
It  is shown that 

lim an = a 
n - - r  co 

with a also f-independent. Both the numbers ~ and 3 depend only on the 
order of  the maximum ~ o f f ;  for a normal (i.e., quadratic) maximum, it is 
found that a = 4.6692 ... and a = 2.5029 .-.. 

In a previous section we have described two sequences of  bifurcations 
that are very likely to be infinite, even if for the reasons exposed there we 
could obtain only a limited number of  terms. We have tried to verify numer- 
ically if the universal metric properties pointed out by Feigenbaum for 
one-dimensional mappings could hold in our dynamical system too, hoping 
for a convergence of  a~ and 8~ as fast as that of  one of the examples in 
Ref. 9. We have computed the ratios 8~ = (p~ - p~-z ) / (p~+l  - pi), i = 1, . . . ,  5, 

for the sequence ~ and 3~* = (p~* - p * - l ) / ( p * l  - pi*)  for cg., where pi 
and p~* are the bifurcation points given in Tables I and II. Both sequences 
8~ and 8~*, listed in Table III ,  seem to indicate a convergence, more rapid for 
8~*, to numbers quite compatible with the one found by Feigenbaum. A 
comment  is required by the last term 8~*. This has been computed knowing 
quite well that it might not have been completely reliable. In fact the numer- 
ical errors due to the large value of the period of cg4* now become relevant 
compared with the very small variation of  the parameter  r. We have com- 
puted the term anyway because of the small number of  terms available 
otherwise, to verify at least a persistence of the sequence around the value 
of 8. 

Table III 

i 8i 8~* 

I 24.22 2.57 
2 9,48 4.63 
3 6,54 4.64 
4 5,29 4.42 
5 4.73 - -  
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An even more  striking instance of  the compatibi l i ty  of  our sequences 
with the one considered by Fe igenbaum is found by looking at how the 
fixed points o f  the Poincar6 map  reproduce themselves upon  transit ion f rom 
each orbit  to the next one in the sequence. Calling ~r  the Poincar6 m a p  on 
a hyperplane  transverse to each orbit  ~ ,  we can write a recursion relation 

x , + l  = ~T(x~) 

When,  for  p~_ 1 < r < pc, we consider the stable orbit  cd~, qb has a stable 
2~-point limit cycle. In  this way we have a recursion funct ion similar to the 
one in Ref. 9 since in the ith bifurcation point  p~ a 2~-point limit cycle becomes 
unstable  and a stable 2~+3--point limit cycle appears ,  with the stable orbi t  
cdi + 1 appear ing.  

A compar i son  with Fe igenbaum's  scale factors % can be a t t empted  
once something  corresponding to 2 is found.  Considering our limit cycles 
at  the bifurcat ion points,  we have observed the following. Calling P~), 
i = 0 , 1  .... ,5 ,  j =  1 ..... 2 ~, the points of  the 2~-point cycle, and o(~+~) and ~ 2 j  - 3- 

p~+ 1) the two points bifurcating f rom p~i) in the 2 ~ + 1-point cycle, we let 

Qi~) o . )  Q~) p(i) 
= 1 2 k 0 -  J_ ~ ~ ~ 2 k  0 

where ko is the index for which " ' ~ " )  P")~ = a(r2k-~,  2zJ is max imum,  8 k 1,..., 2 ~-3- 
Then,  for  i >/ 2, we have that  Q(~) and Q(~) cor respond either to Q(~-1) or  
to Q~-I) .  This is equivalent  to saying that  if we consider the binary tree 
with the points _jP") as nodes of  level i + 1, a pa th  f rom p(0) to a certain p~5) 
exists, a long which the points P~) reproduce themselves with a scale factor  
tha t  is max imum.  

In  Ref. 9 the scale factor,  by definition 1/~,  by which a cluster abou t  a 
poin t  o f  a 2~-cycle reproduces  itself is m a x i m u m  if the point  is 2. For  this 
reason it seems relevant  to compute  the ~ along the pa th  we have specified 
before,  p ropos ing  in this way a correspondence  between Q") and 2. In  
Table  IV we list the values of  the ~ for  the Poincar6 map  on the hyperplane  
x3 = 1.0 for  each coordinate  and the Euclidean distance. 

The  same procedure  has been followed for  the sequence cd~*, the corre- 

o d is the usual Euclidean distance in RL 

Table IV 

xl x2 x, x5 d 

c~1 4.20 4.21 5.05 5.09 4.51 
~2 3.43 3.43 3.29 3.30 3.39 
a3 2.90 2.90 2.94 2.94 2.91 
c~ 4 2.53 2.53 2.52 2.52 2.53 
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Table V 

719 

x l  x2 x4 x~ d 

al* 2.31 2.31 2.38 2.38 2.34 
a2* 2.65 2.65 2.60 2.60 2.63 
~8" 2.43 2.43 2.45 2.45 2.44 

sponding limit cycle being m. 2~-point, where m is dependent on the plane 
chosen for the Poincar6 map. The scale factors ~* for this case are given in 
Table V, also for the Poincar6 map on x8 = 1.0, limited to xl > 0, with 
m = 3 .  

For  different choices of  the hyperplane for the Poincar6 map the results 
are essentially unchanged. 

The compatibility of  our numerical values for ~i and ~i* with the asymp- 
totic value of  ~ computed by Feigenbaum seems evident, even if we could 
compute only a few terms. 

Our results make possible the hypothesis that universal metric proper- 
ties of  one-dimensional mappings also hold in dynamical systems with 
infinite sequences of  bifurcations. The fact that complicated n-dimensional 
phenomena possess characteristics in some sense "one-dimensional"  
appears significant and very suggestive. 9 

These arguments give more support  to our hypothesis of  Section 2 on 
the two sequences being infinite and allow us now to estimate the asymptotic 
values for the critical Reynolds number  p~ and p~*. We obtain for them 

p| = 28.668652, p~* = 28.720135 

A complete numerical definition of these values from the model appears 
impossible, however. 

5. O N S E T  OF  T U R B U L E N C E  

I n  Ref. 1 it is shown that for R12 < r < Rla, randomly chosen initial 
data lead to two attractors (see Fig. 5), on which the motion appears to be 
completely random, the trajectories looking exactly like the ones found by 
Lorenz in his modelJ  2> These two "s t range at t ractors"  are localized in two 

9 A detailed study generalizing Feigenbaum's results has been carried out by Derrida 
e t  a l .  ~1~ Moreover, they have pointed out that also in the H6non two-dimensional 
mapping (5) the bifurcation rate 3 for the sequence of stable periods 2" is the same as 
in Ref. 9. An intuitive explanation for this is indicated by the contracting nature of 
the transformation. 
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Fig. 5. One of the two "strange attractors" for r = 33.0. 

symmetric regions, each of them surrounding two fixed points, two sequences 
of  orbits c~, two sequences f f , , lo  and two orbits G0*, all unstable in this 
range of  the Reynolds number r. 

In the following we give a detailed analysis of the transition from the 
periodic behavior of the sequences c~. to the turbulent behavior on the two 
attractors. 

We consider the motion with random initial data for different values 
of r, starting from r = 28.72, studying the Poincar6 map on the hyperplane 
x8 = 1.4, limited to the region xl >t 0, x~ /> 0 for simplicity. 11 The orbits 
of  only one of the sequences ~ ,  the orbits of two of the sequences ff~*, and 
two orbits c~0*, all intersecting the hyperplane x3 = 1.4, are present in the 
region considered. These intersections are the elements of n-point limit 
cycles for the Poincar6 map. Denoting by c~ a 2~-point limit cycle related to 
an orbit c~, and by c*~ an m-2~-point cycle related to an orbit c~., we find 
the Poincar6 map then has one sequence of cycles c~, one c* * 2,~, one c3,~, one 

-* The complexity of the situation is evident from cycle 5",o, and one c3,0. 
Fig. 6a, where for r = 28.72 we have represented only the cycle c'3,4, stable 
for this value of r, and the unstable cycles co, c~, c'2,0, c'3,0, 5"2,o, 5"8,0. The 

lo For a better understanding see Ref. 1, especially Figs. la, 7a-7d, and 9-11. 
11 Suitable changes in sign, allowed for by the symmetries present in the model, make 

it possible to study any orbit in this region. 
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points of  the stable cycle c*,4 accumulate in three groups in a neighborhood 
of the three points of  the cycle c*,o from which they have bifurcated. Because 
of the scale factor chosen in order to represent a complete picture of  the 
Poincar6 map, the points in each group appear to be practically indistinguish- 
able, but show in the plane (xl, x4) a line along which they duplicate at 
each bifurcation. This fact is clearly evident in Fig. 6a', where on an en- 
larged scale the central group of the points of  the stable cycle ca,4* is repre- 
sented together with the points of  the cycles c*o and c* , a,1, now unstable, 
from which they have bifurcated : they also appear on the line of  the points 
of  c*,4. Even if we give no evidence for this, because of the high computa- 
tional time required, it is reasonable to think that the points of  c*,2 and 
c*,a also stay on the same line. 

A natural extension of this argument is the hypothesis that also for 
r > o~* all the points of the full sequence c*~ are disposed in an analogous 
way along the same line. The same study carried on for the sequence c~ 
shows an analogous phenomenology. 

Let us examine now the behavior of  the flow for r slightly larger than 
28.72. Figures 6b-6d show the projections on the plane (xl, x~) of the 
hyperplane chosen for the Poincar6 map for r = 28.721, r = 28.723, and 
r = 28.730, respectively. In all three figures we see the results of  400 inter- 
sections of the solution curve with our codimension-one section. It  is ob- 
served that the behavior of  the flow is still very much analogous to that 
observed for r = 28.72 when the stable orbit off4* is present. The numerical 
data obtained do not allow us at all to state whether the observed motion 
is periodic, possibly with a very long period, or not. The figures show, 
however, that with increasing r the intersection points keep disposing them- 
selves only on arcs a long the  direction identified by the points of the cycle 
Ca,4, now unstable, but become more and more spread, and they tend to 
approach the points of  the cycle ca.o-* (see Figs. 6a-6d). An examination of 
the values of  the coordinates of  all these points seems to show more and 
more randomness with increasing r, confirmed by Fig. 6e, where we see 
that the behavior of  the flow for r = 28.732 is definitely changed. In fact 
it is possible to observe that now also the points of  the cycles c*~ due to the 
second sequence qr and of the cycle O*,0 due to the second orbit cg0* con- 
tribute to the behavior of  the solution curve. Moreover, some intersection 
points now seem to be arranged rather randomly and not to be connected 
with any one of the unstable cycles of  the Poincar6 map. With continued 
increasing r, we observe a more and more chaotic behavior, due to a gradual 
involvement of the orbits qr also, since the intersection points are now also 
close to the fixed points of  the orbits qr and cgl. Figure 6f shows the motion 
for r = 28.80, appearing fully random around the points of  the unstable 
n-cycles present in the region. 
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Fig. 6. Projections of the Poincar6 map on the plane (xl, x~) for r = (a) 28.720; (b) 
28.721 ; (c) 28.723; (d) 28.730; (e) 28.732; (f) 28.800. (+)  the three points of the cycle 

* " ( x ) t he  t w o  p o i n t s  o f  the  c y c l e  c2 ,o ,  -* "(N) the c~,0, * - (~]) the three points of the cycle ca,0, 
two points of the cycle ~*,0; (@) the fixed point of Co; (z2x) the two points of the cycle 
cl. (a') Points of the central group [part (a)] of the stable cycle c*.4 (+) on an enlarged 
scale, with the points of c*,o (+)  and c '1  (x)  from which they have bifurcated. 

The phenomenology described above does not  allow a rigorous defini- 
t ion of the mechanism of the onset of  turbulence.  In  fact we are unable  to 
evaluate p~* exactly, i.e., the critical value of the Reynolds number  r for 

which the sequence cg, exhausts itself, and  we cannot  state definitely what  
happens  for r slightly greater than O~*. The existence of more infinite se- 
quences of stable periodic orbits in very small ranges of r or with very long 
periods then cannot  be rejected. 
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We think, however, that we can interpret the numerical results in the 
following way. The characteristics of the sequence ~'** indicate that it tends 
rapidly to exhaust itself when )" approaches a value very likely to be quite 
close to p~o*, computed in the previous section according to Feigenbaum's 
theory. For r > p~o*, when all the orbits have become unstable, the system 
possesses only unstable fixed points and periodic orbits: the seven fixed 
points (see Ref. 1), the four sequences of orbits ~f~, the four sequences ~'**, 
and the four orbits ~0". Up to r =~ 28.73 any random initial value is attracted 
by the orbits of one of the four sequences ~* ,  which are definitely unstable, 
but being less unstable than the others, succeed in "catching" the point 
and keep it trapped in their neighborhood, at least for the long time inter- 
vals observed. With increasing r, the orbits W** become more unstable and 
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gradually lose the ability to keep the point trapped, allowing it also to 
approach the other unstable periodic orbits. For r further increased all the 
orbits have lost more and more stability and the point " jumps"  more easily 
from the neighborhood of an orbit to that of another. The motion then 
becomes more and more chaotic, even remaining confined in one of the 
two distinct symmetric regions where the unstable orbits are localized. 

The two strange attractors in our system then appear as a consequence 
of  the instability of  all the orbits present, i.e., with a mechanism perfectly 
analogous to the one in the "s tandard"  Lorenz attractor, (3~ even if much 
more complicated. 

6. C O N C L U S I O N  

Because of the complicated phenomenology present in the considered 
model of the five-mode truncated Navier-Stokes equations, it seems useful 
to present a schematic picture of  the features found. Redefining the sequence 
of  the critical values o f r  with RI'  = R3, R2' = 28.663, Ra' -= p~, R~' = O| 
and Rs'  = Rla, we have: 

(a) For 0 < r <~ RI '  the model exhibits only stationary solutions (see 
Ref. 1 for details). 

(b) For  R~' < r < R3' the system, through an infinite sequence of  
bifurcations, gives rise to four infinite sequences of symmetric orbits c~, 
each one with a period double that of the previous one. 

(c) For  R2' ~< r < R4' a further sequence of infinite bifurcations gives 
rise to four more infinite sequences of orbits Wz*, also symmetrically placed 
and with doubled period, but with a more complicated spatial structure. 

(d) For R4' ~< r < Ra' all the periodic orbits present in the system are 
unstable and an erratic, chaotic motion takes place on two symmetric 
"s t range"  attractors, analogous to the Lorenz model ("turbulence").  

(e) For  r /> Ra' two stable periodic orbits are present. 

At this point a detailed knowledge of the phenomenology of the model 
seems to have been reached. In particular we remark the fact that the tur- 
bulent behavior is reached gradually when no stable fixed point or periodic 
orbit is present and all the unstable ones keep losing stability with increasing 
r. Also a relevant feature is the fact that the two infinite sequences of bi- 
furcations present seem to possess certain characteristics or universality 
analogous to the ones found by Feigenbaum in nonlinear transformations 
of an interval in itself. 

We conclude by proposing two basic questions: How does a different 
choice of the five modes for the truncated Navier-Stokes equations effect 
the behavior of the model, and how does an increase in the number of modes 
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in the truncation affect the model ? Concerning the last question, an ongoing 
study of a seven-mode truncation obtained by adding two more modes to 
the five used in this study seems to show a rather different phenomenology, 
with much more variety and strong features of hysteresis. 
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